249 research outputs found

    A neighbourhood-scale estimate for the cooling potential of green roofs

    Get PDF
    Green roofs offer the possibility to mitigate multiple environmental issues in an urban environment. A common benefit attributed to green roofs is the temperature reduction through evaporation. This study focuses on evaluating the effect that evaporative cooling has on outdoor air temperatures in an urban environment. An established urban energy balance model was modified to quantify the cooling potential of green roofs and study the scalability of this mitigation strategy. Simulations were performed for different climates and urban geometries, with varying soil moisture content, green roof fraction and urban surface layer thickness. All simulations show a linear relationship between surface layer temperature reduction ΔTs and domain averaged evaporation rates from vegetation mmW, i.e. ΔTs = eW ⋅ mmW, where eW is the evaporative cooling potential with a value of ∼ −0.35 Kdaymm−1. This relationship is independent of the method by which water is supplied. We also derive a simple algebraic relation for eW using a Taylor series expansion

    The internal structure of forced fountains

    Full text link
    We study the mixing processes inside a forced fountain using data from direct numerical simulation. The outer boundary of the fountain with the ambient is a turbulent/non-turbulent interface. Inside the fountain, two internal boundaries, both turbulent/turbulent interfaces, are identified: 1) the classical boundary between upflow and downflow which is composed of the loci of points of zero mean vertical velocity; and 2) the streamline that separates the mean flow emitted by the source from the entrained fluid from the ambient (the separatrix). We show that entrainment due to turbulent fluxes across the internal boundary is at least as important as that by the mean flow. However, entrainment by the turbulence behaves substantively differently from that by the mean flow and cannot be modelled using the same assumptions. This presents a challenge for existing models of turbulent fountains and other environmental flows that evolve inside turbulent environments

    Robustness of point measurements of carbon dioxide concentration for the inference of ventilation rates in a wintertime classroom

    Full text link
    Indoor air quality in schools and classrooms is paramount for the health and well-being of pupils and staff. CO2 monitors offer a cost-effective way to assess and manage ventilation provision. However, often only a single point measurement is available which might not be representative of the CO2 distribution within the room. A relatively generic UK classroom in wintertime is simulated using CFD. The natural ventilation provision is driven by buoyancy through high- and low-level openings in both an opposite-ended or single-ended configuration, in which only the horizontal location of the high-level vent is modified. CO2 is modelled as a passive scalar and is shown not to be `well-mixed' within the space. Perhaps surprisingly, the single-ended configuration leads to a `more efficient' ventilation, with lower average CO2 concentration. Measurements taken near the walls, often the location of CO2 monitors, are compared with those made throughout the classroom and found to be more representative of the ventilation rate if made above the breathing zone. These findings are robust with respect to ventilation flow rates and to the flow patterns observed, which were tested by varying the effective vent areas and the ratio of the vent areas.Comment: 27 pages, 12 figures, amended argument, section adde

    Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome

    Get PDF
    Intragenic homozygous deletions in the Large gene are associated with a severe neuromuscular phenotype in the myodystrophy (myd) mouse. These mutations result in a virtual lack of glycosylation of α-dystroglycan. Compound heterozygous LARGE mutations have been reported in a single human patient, manifesting with mild congenital muscular dystrophy (CMD) and severe mental retardation. These mutations are likely to retain some residual LARGE glycosyltransferase activity as indicated by residual α-dystroglycan glycosylation in patient cells. We hypothesized that more severe LARGE mutations are associated with a more severe CMD phenotype in humans. Here we report a 63-kb intragenic LARGE deletion in a family with Walker-Warburg syndrome (WWS), which is characterized by CMD, and severe structural brain and eye malformations. This finding demonstrates that LARGE gene mutations can give rise to a wide clinical spectrum, similar as for other genes that have a role in the post-translational modification of the α-dystroglycan protein

    Distributed urban drag parameterization for sub‐kilometre scale numerical weather prediction

    Get PDF
    A recently developed, height-distributed urban drag parameterization is tested with the London Model, a sub-kilometre resolution version of the Met Office Unified Model over Greater London. The distributed drag parameterization requires vertical morphology profiles in form of height-distributed frontal area functions, which capture the full extent and variability of building heights. London’s morphology profiles are calculated and parameterised by an exponential distribution with the ratio of maximum to mean building height as parameter. A case study evaluates the differences between the new distributed drag scheme and the current London Model set-up using the MORUSES urban land-surface model. The new drag parameterization shows increased horizontal spatial variability in total surface stress, identifying densely built-up areas, high-rise building clusters, parks and the river. Effects on the wind speed in the lower levels include a lesser gradient and more heterogeneous wind profiles, extended wakes downwind of the city centre, and vertically growing perturbations that suggest the formation of internal boundary layers. The surface sensible heat fluxes are under-predicted, which is attributed to difficulties coupling the distributed momentum exchange with the surface-based heat exchange

    POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome

    Get PDF
    Background: Walker-Warburg syndrome (WWS) is an autosomal recessive condition characterised by congenital muscular dystrophy, structural brain defects, and eye malformations. Typical brain abnormalities are hydrocephalus, lissencephaly, agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigration, which causes a cobblestone cortex. Ocular abnormalities include cataract, microphthalmia, buphthalmos, and Peters anomaly. WWS patients show defective O-glycosylation of α-dystroglycan (α-DG), which plays a key role in bridging the cytoskeleton of muscle and CNS cells with extracellular matrix proteins, important for muscle integrity and neuronal migration. In 20% of the WWS patients, hypoglycosylation results from mutations in either the protein O-mannosyltransferase 1 (POMT1), fukutin, or fukutin related protein (FKRP) genes. The other genes for this highly heterogeneous disorder remain to be identified. Objective: To look for mutations in POMT2 as a cause of WWS, as both POMT1 and POMT2 are required to achieve protein O-mannosyltransferase activity. Methods: A candidate gene approach combined with homozygosity mapping. Results: Homozygosity was found for the POMT2 locus at 14q24.3 in four of 11 consanguineous WWS families. Homozygous POMT2 mutations were present in two of these families as well as in one patient from another cohort of six WWS families. Immunohistochemistry in muscle showed severely reduced levels of glycosylated α-DG, which is consistent with the postulated role for POMT2 in the O-mannosylation pathway. Conclusions: A fourth causative gene for WWS was uncovered. These genes account for approximately one third of the WWS cases. Several more genes are anticipated, which are likely to play a role in glycosylation of α-DG

    JPT: A Java Parallelization Tool

    Full text link

    Prenatal muscle development in a mouse model for the secondary dystroglycanopathies

    Get PDF
    The defective glycosylation of α-dystroglycan is associated with a group of muscular dystrophies that are collectively referred to as the secondary dystroglycanopathies. Mutations in the gene encoding fukutin-related protein (FKRP) are one of the most common causes of secondary dystroglycanopathy in the UK and are associated with a wide spectrum of disease. Whilst central nervous system involvement has a prenatal onset, no studies have addressed prenatal muscle development in any of the mouse models for this group of diseases. In view of the pivotal role of α-dystroglycan in early basement membrane formation, we sought to determine if the muscle formation was altered in a mouse model of FKRP-related dystrophy

    Walker-Warburg syndrome

    Get PDF
    Walker-Warburg Syndrome (WWS) is a rare form of autosomal recessive congenital muscular dystrophy associated with brain and eye abnormalities. WWS has a worldwide distribution. The overall incidence is unknown but a survey in North-eastern Italy has reported an incidence rate of 1.2 per 100,000 live births. It is the most severe form of congenital muscular dystrophy with most children dying before the age of three years. WWS presents at birth with generalized hypotonia, muscle weakness, developmental delay with mental retardation and occasional seizures. It is associated with type II cobblestone lissencephaly, hydrocephalus, cerebellar malformations, eye abnormalities and congenital muscular dystrophy characterized by hypoglycosylation of α-dystroglycan. Several genes have been implicated in the etiology of WWS, and others are as yet unknown. Several mutations were found in the Protein O-Mannosyltransferase 1 and 2 (POMT1 and POMT2) genes, and one mutation was found in each of the fukutin and fukutin-related protein (FKRP) genes. Laboratory investigations usually show elevated creatine kinase, myopathic/dystrophic muscle pathology and altered α-dystroglycan. Antenatal diagnosis is possible in families with known mutations. Prenatal ultrasound may be helpful for diagnosis in families where the molecular defect is unknown. No specific treatment is available. Management is only supportive and preventive
    corecore